THE CHEMISTRY AND TECHNOLOGY OF MAGNESIA

MARK A. SHAND
Premier Chemicals, LLC
Findlay, Ohio
THE CHEMISTRY AND TECHNOLOGY OF MAGNESIA
THE CHEMISTRY AND TECHNOLOGY OF MAGNESIA

MARK A. SHAND
Premier Chemicals, LLC
Findlay, Ohio

WILEY-INTERSCIENCE
A JOHN WILEY & SONS, INC. PUBLICATION
CONTENTS

Preface xv
Acknowledgments xvii

1 History of Magnesia 1
 1.1 History of Magnesia, 1
 Bibliography, 4

2 Formation and Occurrence of Magnesite and Brucite 5
 2.1 Introduction, 5
 2.2 Sedimentary Magnesite—Basis for Carbonate Deposition, 7
 2.2.1 Secondary Nodular Magnesite, 8
 2.2.2 Biogenic Carbonate, 8
 2.3 Serpentine Alteration by Hydrothermal Processes, 10
 2.4 Cryptocrystalline Magnesite Formation by Infiltration, 11
 2.5 Crystalline Magnesite—Replacement of Limestone and Dolomite, 11
 2.6 Brucite, 12
 2.7 Worldwide Occurrence of Magnesite and Brucite, 12
 2.7.1 United States and Canada, 13
 2.7.2 Brazil, 17
3 Synthetic Magnesia

3.1 Introduction, 39

3.2 Composition of Seawater and Brines, 41
 3.2.1 Seawater Chemistry, 41
 3.2.2 Brine Extraction, 42
 3.2.3 Sump Leaching Phase, 42
 3.2.4 Preparation Phase, 43
 3.2.5 Production Phase, 44
 3.2.6 Evaporite Production, 44
 3.2.7 Subsurface Brines, 44

3.3 Process Description, 45
 3.3.1 Precipitation Reaction, 45
 3.3.2 Influence of Reaction Conditions on Mg(OH)₂ Particle Morphology, 46
 3.3.3 Dolime/Lime Requirements, 47
 3.3.4 Seawater Pretreatment, 48
3.3.5 Precipitation Process, 50
3.3.6 Settling and Compaction, 51
3.3.7 Washing, 52
3.3.8 Filtration, 52
3.3.9 Brine Precipitation, 54
3.4 Calcination, 55
3.5 Grinding, 55
3.6 Packaging, 56
3.7 Sampling and Testing and In-Process Quality Control, 56
 3.7.1 Dolime, 56
 3.7.2 Seawater, 57
 3.7.3 Reactor, 57
 3.7.4 Settling/Thickener, 57
 3.7.5 Washing, 58
 3.7.6 Filtration, 58
 3.7.7 Calcining, 58
 3.7.8 Grinding, 58
 3.7.9 Finished Product, 58
3.8 Aman Process, 59
 3.8.1 Pyrohydrolysis of Magnesium Chloride Hexahydrate, 59
3.9 General Properties of Synthetic Magnesia, 60
Bibliography, 60
References, 60

4 Mining and Processing Magnesite

4.1 Mining Operations, 63
 4.1.1 Overburden Removal, 63
 4.1.2 Drilling, 63
 4.1.3 Bench Height, 64
 4.1.4 Hole Diameter, 64
 4.1.5 Burden and Spacing, 64
 4.1.6 Subdrilling, 65
 4.1.7 Hole Stemming, 66
 4.1.8 Blast Hole Pattern, 66
 4.1.9 Blast Timing, 67
4.1.10 Blasting Agents, 68
4.1.11 Secondary Blasting, 68
4.1.12 Chemical Contour and Muck Maps, 68

4.2 Processing Magnesite, 69
4.2.1 Ore Removal and Primary Crushing, 70
4.2.2 Gyratory and Cone Crushers, 71
4.2.3 Jaw Crushers, 72
4.2.4 Roll Crushers, 72
4.2.5 Size Separation, 73
4.2.6 Screening, 74
4.2.7 Pneumatic (Air) Classification, 75
4.2.8 Hydroclones, 76

4.3 Gravity Concentration, 76
4.3.1 Float–Sink Separation, 76
4.3.2 Froth Floatation, 77
4.3.3 Floatation Reagents, 79
4.3.4 Floatation Machines, 80

4.4 Tertiary Crushing, 81

4.5 Postcalcination Screening and Grinding, 81

References, 81

5 Calcination of Magnesium Hydroxide and Carbonate

5.1 Calcination of Magnesite, 83
5.1.1 Energy Requirement for Calcination Process, 85
5.1.2 Effect of Time and Temperature, 85
5.1.3 Kinetics of Calcination, 85
5.1.4 Stone Size, 88

5.2 Calcination of Magnesium Hydroxide, 88
5.2.1 Energy Requirement for Calcination Process, 89
5.2.2 Decomposition Mechanism, 90
5.2.3 Kinetics of Decomposition, 93
5.2.4 Effect of Time and Temperature, 94

References, 96

6 Furnaces and Kilns

6.1 Introduction, 97
6.2 Multiple-Hearth Furnaces, 98
 6.2.1 Single Progressive Rabble (Four Arms per Hearth), 101
 6.2.2 Full Progressive Rabble (Four Arms per Hearth), 102
 6.2.3 Back Rabble (Four Arms per Hearth), 102
 6.2.4 Full Progressive Rabble (Two Arms per Hearth), 102
 6.2.5 Refractory Linings, 102
6.3 Horizontal Rotary Kilns, 103
6.4 External Water Coolers, 105
6.5 Shaft Kilns, 107
 6.5.1 Ore Charging, 107
 6.5.2 Discharge, 107
 6.5.3 Modern Shaft Kiln, 109
 6.5.4 Double-Inclined Kiln, 109
 6.5.5 Multichamber Kiln, 109
 6.5.6 Annular Shaft Kiln, 111
 6.5.7 Parallel-Flow Regenerative Kiln, 113

7 Postcalcination Processing
 7.1 Introduction, 115
 7.2 Grinding, 115
 7.2.1 Ring-Roller Mills, 116
 7.2.2 Ball Mills, 117
Bibliography, 119
Reference, 119

8 Physical and Chemical Properties of Magnesium Oxide
 8.1 Introduction, 121
 8.2 Physical Properties of Magnesium Oxide, 121
 8.3 Chemical Properties of Magnesium Oxide, 125
 8.3.1 Dissolution of Magnesium Oxide, 126
 8.4 Surface Structures of MgO, 127
 8.5 Molecular Adsorption on MgO, 129
 8.5.1 Chemisorption of Various Molecules on MgO, 129
Bibliography, 130
References, 131
9 Other Magnesia Products

9.1 Production of Hard-Burned Magnesia, 133
9.2 Production of Dead-Burned Magnesia, 133
 9.2.1 Sintering, 139
 9.2.2 Sinter Aids, 142
 9.2.3 Production Methods, 144
9.3 Fused Magnesia, 144
 9.3.1 Refractory-Grade Fused Magnesia, 145
9.4 Magnesium Hydroxide Slurry, 146
 9.4.1 Production of Synthetic Magnesium Hydroxide Slurry, 146
 9.4.2 Hydration of Magnesium Oxide, 148
 9.4.3 Hydration Kinetics and Mechanisms, 150
 9.4.4 Testing and Quality Control of Magnesium Hydroxide Slurry, 151
9.5 Purification by Carbonation of Magnesium Hydroxide Slurry, 151
 9.5.1 Precipitation of Magnesium Carbonate from Bicarbonate Solution, 153

References, 153

10 Water and Wastewater Applications for Magnesia Products 155

10.1 Introduction to Applications, 155
10.2 Industrial Wastewater Treatment, 155
10.3 Advantages of Magnesium Hydroxide in Wastewater Treatment, 157
 10.3.1 Safety, 157
 10.3.2 pH Control, 157
 10.3.3 Metals Removal, 158
 10.3.4 Sludge Volume and Dewatering, 159
 10.3.5 Treatment Methods, 161
 10.3.6 Handling Requirements, 161
 10.3.7 Environmental Impact, 163
10.4 Adsorption of Dyes on Magnesium Hydroxide, 163
10.5 Biological Wastewater Treatment, 163
 10.5.1 Aerobic Processes, 164
10.5.2 Nitrification, 164
10.5.3 Anaerobic Digestion, 165
10.6 Bioflocculation and Solids Settling, 166
10.7 Phosphorus Removal from Wastewater and Struvite Formation, 167
10.8 Odor and Corrosion Control in Sanitary Collection Systems, 168
 10.8.1 Addition to Raw Sewage, 170
 10.8.2 Crown Spraying, 172
10.9 Acid Mine Drainage, 172
10.10 Silica Removal from Industrial Plant Water, 173
 10.10.1 Mechanism of Silica Removal, 174
 10.10.2 Factors Controlling the Removal of Silica, 174
References, 176

11 Magnesia in Polymer Applications 179

 11.1 Magnesium Hydroxide as a Flame Retardant for Polymer Applications, 179
 11.2 Flame-Retardant Mechanisms, 180
 11.3 Properties Required of Magnesium Hydroxide for Flame-Retardant Applications, 181
 11.3.1 Surface Treatment, 182
 11.3.2 Stearic Acid, 183
 11.3.3 Silanes, 184
 11.4 Novel Applications for Magnesium Hydroxide as a Flame Retardant, 184
 11.5 Polymer Curing and Thickening, 184
 11.5.1 Sheet Molding Compound (SMC), 184
 11.5.2 Synthetic Rubber, 185
Bibliography, 186
References, 186

12 Environmental Applications 189

 12.1 Flue Gas Desulfurization, 189
 12.2 Regenerative Process, 189
 12.2.1 Process Description, 190
 12.2.2 Once-Through Process, 192
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2.3 Kawasaki Process, 192</td>
<td></td>
</tr>
<tr>
<td>12.2.4 Dravo Thiosorbic Process with Magnesium Hydroxide Recovery, 194</td>
<td></td>
</tr>
<tr>
<td>12.2.5 Sorbtech Process, 194</td>
<td></td>
</tr>
<tr>
<td>12.3 Remediation Applications, 194</td>
<td></td>
</tr>
<tr>
<td>12.4 Nuclear Waste Disposal, 196</td>
<td></td>
</tr>
<tr>
<td>12.5 Hazardous Spill Cleanup, 196</td>
<td></td>
</tr>
<tr>
<td>12.6 Antibacterial Activity of Magnesium Oxide Powder, 197</td>
<td></td>
</tr>
<tr>
<td>12.7 Carbon Dioxide Sequestration Using Brucite, 197</td>
<td></td>
</tr>
<tr>
<td>Bibliography, 198</td>
<td></td>
</tr>
<tr>
<td>References, 198</td>
<td></td>
</tr>
<tr>
<td>13 Role of Magnesium in Animal, Plant, and Human Nutrition, 201</td>
<td></td>
</tr>
<tr>
<td>13.1 Role of Magnesium in Plant Nutrition, 201</td>
<td></td>
</tr>
<tr>
<td>13.1.1 Uptake of Magnesium from the Soil, 202</td>
<td></td>
</tr>
<tr>
<td>13.1.2 Functions of Magnesium in Plant Growth, 202</td>
<td></td>
</tr>
<tr>
<td>13.2 Magnesium Fertilizers, 203</td>
<td></td>
</tr>
<tr>
<td>13.3 Magnesium in Animal Nutrition, 203</td>
<td></td>
</tr>
<tr>
<td>13.3.1 Ruminant Animals, 204</td>
<td></td>
</tr>
<tr>
<td>13.3.2 Magnesium Oxide Requirements for Animal Nutrition, 205</td>
<td></td>
</tr>
<tr>
<td>13.3.3 Factors Affecting Magnesium Utilization, 205</td>
<td></td>
</tr>
<tr>
<td>13.3.4 Magnesium Bioavailability, 206</td>
<td></td>
</tr>
<tr>
<td>13.3.5 Preventing Grass Tetany by Magnesium Fertilization, 207</td>
<td></td>
</tr>
<tr>
<td>13.3.6 Preventing Grass Tetany by Oral Supplementation, 207</td>
<td></td>
</tr>
<tr>
<td>13.3.7 Magnesium Requirements of Swine, 207</td>
<td></td>
</tr>
<tr>
<td>13.3.8 Magnesium Requirements of Poultry, 208</td>
<td></td>
</tr>
<tr>
<td>13.3.9 Magnesium in Dairy Ration Buffers, 208</td>
<td></td>
</tr>
<tr>
<td>13.4 Magnesium in Human Health and Nutrition, 209</td>
<td></td>
</tr>
<tr>
<td>13.4.1 Health Benefits of Magnesium, 209</td>
<td></td>
</tr>
<tr>
<td>Bibliography, 210</td>
<td></td>
</tr>
<tr>
<td>References, 211</td>
<td></td>
</tr>
<tr>
<td>14 Magnesium Salts and Magnesium Metal, 215</td>
<td></td>
</tr>
<tr>
<td>14.1 Magnesium Acetate, 215</td>
<td></td>
</tr>
<tr>
<td>14.2 Magnesium Alkyls, 215</td>
<td></td>
</tr>
</tbody>
</table>
14 Magnesium Compounds

14.3 Magnesium Chloride, 216
14.4 Magnesium Nitrate, 217
14.5 Magnesium Sulfate, 217
14.6 Magnesium Soaps, 218
14.7 Magnesium Overbase Sulfonates, 218
14.8 Magnesium Peroxide, 219
14.9 Magnesium Metal Production, 220
 14.9.1 Thermal Processes, 220
 14.9.2 Electrolytic Production, 221

Bibliography, 221

15 Pulp Applications

15.1 Sulfite Pulping, 223
15.2 Magnefite Pulping Process, 223
 15.2.1 Pulping Liquor Preparation, 225
 15.2.2 Pulping Process, 226
 15.2.3 Chemical Recovery, 226
15.3 Pulp Bleaching, 226
 15.3.1 Oxygen Bleaching and Delignification, 227
 15.3.2 Hydrogen Peroxide Bleaching, 228
15.4 Deinking, 229
Bibliography, 229
References, 230

16 Magnesia Cements

16.1 Introduction, 231
16.2 Magnesium Oxychloride Cement, 231
 16.2.1 Phase Formation, 232
 16.2.2 Water Resistance of MOC Cement, 233
16.3 Magnesium Oxysulfate (MOS) Cement, 234
16.4 Thermal Insulative and Fire Resistance Properties of Sorel Cement, 234
 16.4.1 Thermal Insulation, 234
 16.4.2 Fire Resistance, 235
16.5 Magnesium Phosphate Cement, 235
 16.5.1 Reaction Mechanism, 235
16.5.2 Magnesium Phosphate Cement Derived from Ammonium Dihydrogen Phosphate, 236
16.5.3 Magnesium Phosphate Cement Derived from Diammonium Phosphate, 237
16.5.4 Magnesium Phosphate Cement Derived from Ammonium Polyphosphate, 237
16.5.5 Magnesium Phosphate Cement Derived from Potassium Dihydrogen Phosphate, 238

Bibliography, 238
References, 238

17 Miscellaneous Magnesia Applications 241

17.1 Sugar Manufacture, 241
 17.1.1 Clarification and Filtration, 243
 17.1.2 Reduction in Scaling, 243
 17.1.3 Additional Benefits, 243
17.2 Chrome Tanning of Leather, 244
17.3 Magnesia as a Catalyst Support, 245
 17.3.1 Example of Magnesium Oxide as Catalyst, 245
17.4 Fuel Additives, 246
 17.4.1 High-Temperature Corrosion, 247
 17.4.2 Low-Temperature Corrosion, 248
 17.4.3 Types of Additives for High-Temperature Corrosion, 248
 17.4.4 Types of Additives for Low-Temperature Corrosion, 249
17.5 Well-Drilling Fluids, 250
17.6 Nanoparticulate Magnesia, 251
 17.6.1 Synthesis of Nanoparticulate Magnesia, 251
 17.6.2 Chemical and Catalytic Properties of Nanocrystals, 251
17.7 Transformer Steel Coating, 254

Bibliography, 254
References, 254

Appendix 257

Index 263
PREFACE

This book attempts to encompass “all things magnesia.” Although the magnesia industry is similar in many respects to the much larger lime industry, there is to my knowledge no text concentrating solely on magnesia. There are, however, several excellent texts covering the lime industry. Unfortunately, in these books magnesia is practically a footnote. Although lime and limestone production far exceeds that of the magnesia industry (total lime production in the United States in 2004 was 20.4 million metric tonnes, compared with a total magnesia production of 280,000 metric tonnes), magnesia is still an important chemical and maintains many niche applications. By far, the largest consumer of magnesia worldwide is the refractory industry, which consumed about 56% of the magnesia in the United States in 2004, the remaining 44% being used in agricultural, chemical, construction, environmental, and other industrial applications.

This text starts with the geological occurrences of magnesite and brucite, followed by the processing of magnesite to the end product magnesium oxide. The production of magnesium hydroxide and magnesium oxide by precipitation from seawater and brine sources is also introduced, along with details on the wide range of applications in which magnesia is utilized. These applications span animal feed to wastewater treatment, catalyst support and fertilizers to the production of pulp and paper.

Like many industries, a certain amount of jargon arises as the industry matures, and the magnesia industry is no exception to this. However, there may be some confusion as to which compound magnesia really applies.
My definition is that the term *magnesia* is a generalization for magnesium oxide, whether it is derived from natural magnesite or extracted from seawater or brine. The term *magnesite*, in the strictest sense, refers to the mineral consisting of magnesium carbonate, but the same term is often used for the oxide, that is, *dead-burned magnesite*, the term even being used when the oxide has been produced from seawater or brine sources.

The major products produced by the magnesia industry are magnesium carbonate (magnesite); magnesium hydroxide, both natural (brucite) and that derived from seawater and brine; magnesium oxide, which in itself has a number of categories, namely, light-burned or caustic-calcined MgO, hard-burn MgO, and dead-burn MgO, or as it is otherwise known, periclase; and the last category, fused magnesia.

Light-burn or caustic-calcined MgO refers to a product that has been calcined at the lower end of the temperature spectrum, typically 1500–1700°F. This product typically has the highest reactivity and greatest specific surface area of the entire magnesium oxide category. Hard-burn MgO is calcined at a higher temperature, 2400–2800°F, and has a correspondingly lower reactivity and surface area. Dead-burn MgO, or periclase, is produced at temperatures above 2800°F, which having a very small surface area, makes it unreactive. Finally, fused magnesia, produced at temperatures above the fusion point of magnesium oxide (2800°C), is the least reactive.
ACKNOWLEDGMENTS

First and foremost, I am indebted to my wife Karen, whose encouragement kept me working during periods when my enthusiasm waned, and also to my kids, Alex, Victoria, and Madalyn, whose persistent question “haven’t you finished that book yet?” also provided the needed impetus to get the text finished.

I also owe a debt of gratitude to John Gehret and the board of directors of Premier Chemicals, LLC for allowing me the opportunity to write the book. I would also like to especially thank my long-time friend and mentor, Dr. Ronald Wardle, along with John Noble of Vesuvius USA and Mark Wajer of Martin Marietta Magnesia Specialties for diligently correcting the text and providing helpful suggestions. I would also like to thank Lynden Johnson for increasing my knowledge of the process of mining magnesite.

Finally, I would like to thank Gerry Spoors, Dr. Theofilos Zampetakis, and John Turner for their affirmation that this book should be written, and to John Wiley & Sons for agreeing to publish said text.